Residual force enhancement in myofibrils and sarcomeres.

نویسندگان

  • V Joumaa
  • T R Leonard
  • W Herzog
چکیده

Residual force enhancement has been observed following active stretch of skeletal muscles and single fibres. However, there has been intense debate whether force enhancement is a sarcomeric property, or is associated with sarcomere length instability and the associated development of non-uniformities. Here, we studied force enhancement for the first time in isolated myofibrils (n=18) that, owing to the strict in series arrangement, allowed for evaluation of this property in individual sarcomeres (n=79). We found consistent force enhancement following stretch in all myofibrils and each sarcomere, and forces in the enhanced state typically exceeded the isometric forces on the plateau of the force-length relationship. Measurements were made on the plateau and the descending limb of the force-length relationship and revealed gross sarcomere length non-uniformities prior to and following active myofibril stretching, but in contrast to previous accounts, revealed that sarcomere lengths were perfectly stable under these experimental conditions. We conclude that force enhancement is a sarcomeric property that does not depend on sarcomere length instability, that force enhancement varies greatly for different sarcomeres within the same myofibril and that sarcomeres with vastly different amounts of actin-myosin overlap produce the same isometric steady-state forces. This last finding was not explained by differences in the amount of contractile proteins within sarcomeres, vastly different passive properties of individual sarcomeres or (half-) sarcomere length instabilities, suggesting that the basic mechanical properties of muscles, such as force enhancement, force depression and creep, which have traditionally been associated with sarcomere instabilities and the corresponding dynamic redistribution of sarcomere lengths, are not caused by such instabilities, but rather seem to be inherent properties of the mechanisms of contraction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual Force Enhancement in Mechanically Isolated Half-sarcomeres

Our goal was to test if half-sarcomeres produce force enhancement after stretch. Single myofibrils from rabbit psoas were placed in a temperature-controlled (10°C) bath, where half-sarcomeres were isolated using two precalibrated glass micro-needles. The force produced during activation of the half-sarcomere was measured by tracking the displacement of the micro-needles. The half-sarcomere leng...

متن کامل

The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin.

When activated skeletal muscles are stretched, the force increases significantly. After the stretch, the force decreases and reaches a steady-state level that is higher than the force produced at the corresponding length during purely isometric contractions. This phenomenon, referred to as residual force enhancement, has been observed for more than 50 years, but the mechanism remains elusive, g...

متن کامل

The role of sarcomere length non-uniformities in residual force enhancement of skeletal muscle myofibrils.

The sarcomere length non-uniformity theory (SLNT) is a widely accepted explanation for residual force enhancement (RFE). RFE is the increase in steady-state isometric force following active muscle stretching. The SLNT predicts that active stretching of a muscle causes sarcomere lengths (SL) to become non-uniform, with some sarcomeres stretched beyond actin-myosin filament overlap (popping), cau...

متن کامل

Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin.

In the cross-bridge theory, contractile force is produced by cross-bridges that form between actin and myosin filaments. However, when a contracting muscle is stretched, its active force vastly exceeds the force that can be attributed to cross-bridges. This unexplained, enhanced force has been thought to originate in the giant protein titin, which becomes stiffer in actively compared with passi...

متن کامل

Dynamics of individual sarcomeres during and after stretch in activated single myofibrils.

It is generally assumed that sarcomere lengths (SLs) change in isometric fibres following activation and following stretch on the descending limb of the force-length relationship, because of an inherent instability. Although this assumption has never been tested directly, instability and SL non-uniformity have been associated with several mechanical properties, such as 'creep' and force enhance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 275 1641  شماره 

صفحات  -

تاریخ انتشار 2008